Xenolinguistics, as broadly understood, though mostly as a matter of farce, is the study of non-human languages. In May 2009, the blockbuster Star Trek premiered around the world. In one of its funnier exchanges, James T. Kirk and Uhura bring xenolinguistics to our awareness:

KIRK: So you’re a cadet. You’re studying. What’s your focus?
UHURA: Xenolinguistics. You have no idea what that means.
KIRK: Study of alien languages. Morphology, phonology, syntax. It means you’ve got a talented tongue.

Yes, typically, xenolinguistics is the study of “alien” languages, but one must permit the possibility of other languages on planet Earth, whether from ocean-dwelling mammals as seen in Star Trek IV or Elvish from Lord of the Rings, so I choose to define it as the study of “non-human” languages. Perhaps unsurprisingly, Klingon arguably does not qualify, as its creator, Marc Okrand, developed the language with human language universals, though with admittedly rare syntactic and phonetic combinations. (Of course, one must cede that languages could have developed independently on other planets, as they apparently did in Star Trek, with exactly the same linguistic universals, tendencies, and restraints as ours.) The combinations are rare because they impede cognitive processing and pronunciation, respectively.

How so?

First, regarding cognitive processing, Klingon uses an “object first” sentence structure, whereby the sentence “I hit Charlie” becomes partially inverted in Klingon as “Charlie I hit” though they mean the same thing. Very few languages in English have this type of sentence structure, and the few that do are locked away in the Amazon or similarly remote, or possibly even undiscovered, environments. The reason why object first, as opposed to subject first languages, are so rare is because, in summary, we tend to think linearly. Starting with an effect, not a cause, increases uncertainty and ambiguity in the brain as it processes the sentences. Therefore, it seems likely that object first sentences have either evaporated with time due to others having a distinct competitive advantage, or that they never arose significantly in the first place due to its relative handicap. We would predict that such languages could only exist, all things being equal (this is a key phrase), in an environment of relative isolation, without trade and significant cultural exchange.

Second, regarding pronunciation, Klingon possesses a particularly odd phonetic inventory, yet its sounds, while not generally consistent with what occurs in human languages, are can all be found in the inventory of human sounds. In other words, there are no sounds in Klingon that a human cannot make. The reason why its sounds, alone and in combination, are relatively rare in English is because they cost of a lot of energy to make. The presence of harsh fricatives and gutturals is accentuated by lax (meek, in Klingon terms) vowels.

This discussion on Klingon is all to say that we really have no idea what an alien language would be like, as we are bound by certain customs and universals as human speakers. Suzette Haden Elgin recognized this problem when she wrote the science fiction novel, Native Tongue. In the novel, humans interact with aliens, but since presumably the plasticity of an adult brain is so low, only babies have the ability to learn alien languages because adult brains get overloaded by them. Therefore, Elgin’s solution to the problem is that humans force babies to interact with aliens thereby learning alien language and serving as a bridge. Yet there are many very important reasons to believe that even babies would have difficulty learning alien languages. Our specifically neural structures, as made more clear every day by neuroscientists, linguists, and psychologists, strongly impact our relationship with language. An easy way to think about this is the difference between how chimps and humans deal with language. Yes, chimps are capable of rudimentary language, expressing words with consistent referents, but they are not capable of the complex grammars we are.

The same might be true of aliens. Whether humans or aliens have the comparatively finite grammar is beside the point: the cost of information transmission seems like it will be relatively high. Whether the information transmission occurs through telepathy, or the spoken or written word, obviating the impact of impossible phonetics for the human tongue, grammars and meaning would be the most difficult barriers to understanding. But this is not to say they would be insurmountable. Logic is a fine tool to use, so long as specificity is a quality aliens value.

This is why meaning could be a problem. The physicist-cum-Nebula and Hugo Award-winning author David Brin turned the tables in his incredible Startide Rising saga. In this universe, humans, derogatorily called “wolflings” by most aliens, speak with far more ambiguity than others. It is the humans that do not value specificity, littering the language with metaphors and words that have all kinds of double or triple meanings. Someone familiar with any Chinese language would scoff at merely three possible meanings for an isolated word, as it could have many more than that. Most alien languages, such as Galactic Six or Galactic Five, do not allow for ambiguous meanings, as each word corresponds to something very specific and could not mean anything else. Some languages on Earth accomplish this feat with elaborate case systems in which certain morphemes are attached to a word, whether grammatically or morphologically, denoting its relationship to a subject, object, or other grammatical role.

The practical import of xenolinguistics is not yet that we need to communicate with alien races, of course, though this would be nice if we could find a way to do so. We would better be able to negotiate on our own behalf in the event of calamity, or just to establish beneficial trading relations. More immediately, but in light of the contributions of science fiction thinkers, consideration of xenolinguistics might help us assess the differences in meaning that need to be ironed out by natural language processors, for this is the difficulty with speech recognition programs and all manner of artificial intelligence. How will we store the information in such a way that it will convey all denotations and connotations, which may change given the context, and how will we store the context information in the word? In the book, I have a section on how natural language processors do it today and how it might improve. Unfortunately, we still have precious little real xenolinguistics to build upon for these tasks and therefore the absolute practical import is sadly very low for aspiring xenolinguists. My advice? Learn computer science.

Advertisements